This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Friday, May 1, 2015

From Russian Mathematical Olympiad

Evaluate:

$$  \int_0^1 \frac{\arctan \dfrac{x}{x+1}}{\arctan \dfrac{1+2x-2x^2}{2}}\,\,{\rm d}x$$

Solution:



Let $\displaystyle f(x)=\frac{\arctan \dfrac{x}{x+1}}{\arctan \dfrac{1+2x-2x^2}{2} }=\frac{\arctan \dfrac{x}{x+1}}{\arctan \dfrac{1+2x(1-x)}{2}}  $.

We note that:

$$ f(x)+f(1-x)=\frac{\arctan \dfrac{x}{x+1}}{\arctan \dfrac{1+2x(1-x)}{2}} + \frac{\arctan \dfrac{1-x}{2-x}}{\arctan \dfrac{1+2(1-x)x}{2}}= \cdots =1  $$


by making use of the formula: $\displaystyle \tan \left ( x+y \right )= \frac{\tan x +\tan y}{1-\tan x \tan y}$.

Therefore, if $I$ denotes the given integral we have that:

$$2I=\int_{0}^{1}f(x)\,{\rm d}x + \int_{0}^{1}f(1-x)\, {\rm d}x = \int_{0}^{1}\, {\rm d}x  \Rightarrow I = \frac{1}{2}$$

and the exercise comes to an end.

No comments:

Post a Comment