This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Sunday, April 12, 2015

Integral involving a logarithm

Evaluate the integral:
$$\int_{0}^{\infty}\frac{1}{x}\ln \left ( \frac{x^2+2kx \cos b+k^2}{x^2+2kx \cos a+k^2} \right )\,dx $$

whereas $0\leq a, b \leq \pi, \;\; k>0$.

Solution:



1st way : We are transforming the integral into a double one and by invonking Fubini's theorem for interchanging the integrals. Successively we have:

$$\begin{aligned}
\int^{\infty}_{0} \frac{1}{x}\ln\left(\frac{x^2+2kx\cdot \cos b+k^2}{x^2+2k x\cdot \cos a+k^2}\right)\,dx &= \int_{0}^{\infty}\frac{1}{x}\ln \left ( x^2+2k x  \cos \alpha +k^2 \right )\bigg|_{\alpha =a}^{\alpha =b}\,dx \\
 &= \int_{0}^{\infty}\frac{1}{x}\int_{a}^{b}\frac{\partial }{\partial \alpha }\ln \left ( x^2+2k x \cos  \alpha  +k^2\right )\,d\alpha \;dx\\
 &= -\int_{a}^{b}\int_{0}^{\infty}\frac{2k\sin \alpha }{x^2+2k\cos a x +k^2}\,dx\;d\alpha \\
 &=-\int_{a}^{b}\int_{0}^{\infty}\frac{2k\sin \alpha }{\left ( x+k\cos a \right )^2+k^2\sin^2 \alpha }\,dx\;d\alpha  \\
 &= -2\int_{a}^{b}\tan^{-1}\left ( \frac{x}{k\sin \alpha } +\frac{1}{\tan \alpha }\right )\bigg|_{0}^{\infty}d\alpha \\
 &=-2\int_{a}^{b}\left [ \frac{\pi}{2}-\tan^{-1}\left ( \frac{1}{\tan \alpha } \right ) \right ]\,d\alpha \\
 &=-2\int_{a}^{b}\tan^{-1}\left ( \tan \alpha  \right )\, d\alpha \\
 &=-2\int_{a}^{b}\alpha \,d\alpha =a^2-b^2
\end{aligned}$$

2nd way: Using Fourier Series.

We are using the following formulae:

$\blacksquare \displaystyle \; \; \sum_{n=1}^{\infty}\frac{x^n \cos (na)}{n}=-\frac{1}{2}\ln \left ( x^2-2x\cos a +1 \right ), \; |x|<1 $ which is derived pretty easily by subbing $z=xe^{ia}$ into the Taylor's expansion of $\ln (1-z)$.

$\blacksquare \displaystyle \sum_{n=1}^{\infty}(-1)^n \frac{\cos nx}{n^2}=\frac{x^2}{4}-\frac{\pi^2}{12}, \;\; \left | x \right |<\pi$ which is derived by integrating the Fourier series $\displaystyle \sum_{n=1}^{\infty}(-1)^n \frac{\sin n x}{n}=-\frac{x}{2}, \; \left | x \right |<\pi$ once and subbing $x=0$. Note that:

$$ \begin{aligned}
\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2} &=-\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2} \\
 &= -\eta (2)\\
 &= -\left ( 1-2^{1-2} \right )\zeta(2)\\
 &= -\frac{\zeta(2)}{2}=-\frac{\pi^2}{12}
\end{aligned}$$

whereas $\eta$ is the $\eta$ Dirichlet function. Another way of calculating the series is by re-arranging its terms since it converges absolutely.

Hence the original integral is transformed as follows:

$$\begin{aligned}
\int_{0}^{\infty}\frac{1}{x}\ln \left ( \frac{x^2+2kx \cos b+k^2}{x^2+2kx \cos a+k^2} \right )\,dx &\overset{u=x/k}{=\! =\! =\!}\int_{0}^{\infty}\frac{1}{u}\ln \left ( \frac{u^2+2u\cos b+1}{u^2+2u \cos a+1} \right )\,du \\
 &= \int_{0}^{1}\frac{1}{u}\ln \left ( \frac{u^2+2u\cos b+1}{u^2+2u \cos a+1} \right )\,du + \\
 & \quad \quad \quad \quad +\int_{1}^{\infty}\frac{1}{u}\ln \left ( \frac{u^2+2u\cos b+1}{u^2+2u \cos a+1} \right )\,du  \\
 &\overset{u \mapsto  1/u}{=\! =\! =\! =\!}2\int_{0}^{1}\frac{1}{u}\ln \left ( \frac{u^2+2u\cos b+1}{u^2+2u \cos a+1} \right )\,du  \\
 &=4\int_{0}^{1}\frac{1}{u}\sum_{n=1}^{\infty}(-u)^n \frac{\cos na-\cos nb}{n}\,du \\
 &= 4\sum_{n=1}^{\infty}(-1)^n \frac{\cos na-\cos nb}{n}\int_{0}^{1}u^{n-1}\,du \\
 &=4\sum_{n=1}^{\infty}(-1)^n \frac{\cos na-\cos nb}{n^2} \\
 &=4\left ( \frac{a^2}{4}-\frac{b^2}{4} \right ) \\
 &=a^2-b^2
\end{aligned}$$

Source: mathematica.gr

No comments:

Post a Comment