This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Analytic Number Theory. Show all posts
Showing posts with label Analytic Number Theory. Show all posts

Monday, December 5, 2016

Pseudo sum

Let $\alpha, \beta $ be positive irrational numbers such that $\displaystyle \frac{1}{\alpha} + \frac{1}{\beta}=1$. Evaluate the (pseudo) sum:


$$\sum_{n=1}^{\infty} \left(\frac{1}{\lfloor n\alpha\rfloor^2}+\frac{1}{\lfloor n\beta\rfloor^2}\right)$$

Solution

Saturday, July 2, 2016

Alternating series with eta dirichlet

Let $\eta$ denote Dirichlet's eta function. Prove that

$$\frac{\pi}{4}=1+\sum_{k=1}^{\infty}(-1)^{k}\frac{\eta(k)}{2^{k}}$$

Solution

$\sum \limits_{n=1}^{\infty} \left(\zeta(2n) -\beta(2n) \right)$

Prove that:

$$\sum_{n=1}^{\infty}\left( \zeta(2n)-\beta(2n) \right)=\frac{1}{2}+\frac{\ln 2}{2}$$

Solution

Thursday, June 30, 2016

A $\zeta(2n+1)$ series

Let $\zeta$ denote the Riemann Zeta function. Evaluate the series:

$$\sum_{n=1}^{\infty} \frac{\zeta(2n+1)}{(n+1)(2n+1)}$$

(Serafim Tsipelis, Anastasios Kotronis)
Solution

Tuesday, June 28, 2016

Diriclet series

Let $\sigma(n)$ be the divisor function that is $ \displaystyle {\rm \sigma(n)=\sum \limits_{d \mid n} d}$. Prove that for $s \in \mathbb{R} \mid s >2$ it holds that:

$$\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^s} = \zeta(s) \zeta(s-1)$$

where $\zeta$ is the Riemann zeta function.

Solution

Series

Let $a>\frac{1}{4}$. Prove that:

$$\sum_{n=1}^{\infty} \frac{1}{n^2-n+a} = \frac{\pi}{\sqrt{4a-1}} \frac{e^{\pi \sqrt{4a-1}}-1}{e^{\pi \sqrt{4a-1}}+1}$$

Solution